Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We discuss data of three laboratory stick‐slip experiments on Westerly Granite samples performed at elevated confining pressure and constant displacement rate on rough fracture surfaces. The experiments produced complex slip patterns including fast and slow ruptures with large and small fault slips, as well as failure events on the fault surface producing acoustic emission bursts without externally‐detectable stress drop. Preparatory processes leading to large slips were tracked with an ensemble of ten seismo‐mechanical and statistical parameters characterizing local and global damage and stress evolution, localization and clustering processes, as well as event interactions. We decompose complex spatio‐temporal trends in the lab‐quake characteristics and identify persistent effects of evolving fault roughness and damage at different length scales, and local stress evolution approaching large events. The observed trends highlight labquake localization processes on different spatial and temporal scales. The preparatory process of large slip events includes smaller events marked by confined bursts of acoustic emission activity that collectively prepare the fault surface for a system‐wide failure by conditioning the large‐scale stress field. Our results are consistent overall with an evolving process of intermittent criticality leading to large failure events, and may contribute to improved forecasting of large natural earthquakes.more » « less
-
Abstract Measures of foreshock occurrence are systematically examined using earthquake catalogs for eight regions (Italy, southern California, northern California, Costa Rica, Onshore Japan, Alaska, Turkey, and Greece) after imposing a magnitude ≥3.0 completeness level. Foreshocks are identified using three approaches: a magnitude-dependent space + fixed-time windowing method, a nearest-neighbor clustering method, and a modified magnitude-dependent space + variable-time windowing method. The method with fixed-time windows systematically yields higher counts of foreshocks than the other two clustering methods. We find similar counts of foreshocks across the three methods when the magnitude aperture is equalized by including only earthquakes in the magnitude range M*−2≤ M< M*, in which M* is the mainshock magnitude. For most of the catalogs (excluding Italy and southern California), the measured b-values of the foreshocks of all region-specific mainshocks are lower by 0.1–0.2 than b-values of respective aftershocks. Allowing for variable-time windows results in relatively high probabilities of having at least one foreshock in Italy (∼43%–56%), compared to other regional catalogs. Foreshock probabilities decrease to 14%–41% for regions such as Turkey, Greece, and Costa Rica. Similar trends are found when requiring at least five foreshocks in a sequence to be considered. Estimates of foreshock probabilities for each mainshock are method dependent; however, consistent regional trends exist regardless of method, with regions such as Italy and southern California producing more observable foreshocks than Turkey and Greece. Some regions with relatively high background seismicity have comparatively low probabilities of detectable foreshock activity when using methods that account for variable background, possibly due to depletion of near-failure fault conditions by background activity.more » « less
An official website of the United States government
